Как разделить дробь на целое число?

14

Содержание статьи

Никогда не знаешь, какие знания в жизни могут пригодиться. Поэтому не следует выбрасывать из памяти школьные уроки по математике, на которых учителя дают наиболее распространенные примеры, которые являются самыми необходимыми для дальнейшей жизни. Зная таблицу умножения и другие вычислительные схемы, можно быстро выполнить подсчет в уме, не прибегая к калькулятору. У большинства людей манипуляции с обыкновенными дробями вызывают ряд сложностей. Чтобы научиться оперировать такими числами, достаточно запомнить правила, по которым происходят вычисления. Они достаточно простые, запомнив их, вы легко сможете справиться даже с самой сложной задачей. Не забудьте закрепить свои навыки при помощи практических занятий.

Если вы не знаете или не помните, как разделить дробь на целое число, то прочитайте внимательно методику решения данной задачи. Объяснения с простыми примерами позволят понять, что на самом деле провести такое вычисление совсем несложно. Напоминаем, что число над дробью называется числителем, а под ней – знаменателем. Для получения ответа на этот вопрос, следует выполнить ряд последовательных действий:

Задача: 4/5 ÷ 3 = ?

1. Необходимо представить целое число в виде обыкновенной дроби, а именно, приписать знаменатель, равный единице:

3=3/1

2. Записываем делимое и делитель нашей задачи в преобразованном состоянии:

4/5 ÷ 3/1 = ?

3. Существует правило, которое подходит к этой ситуации. Деление двух дробей равнозначно произведению первой дроби на обратную вторую дробь. Обратную дробь легко получить, поменяв местами числитель со знаменателем:

a/b ÷ c/d = a/b*d/c

Применяем этот метод к нашей задаче. Получаем следующее выражение:

4/5 ÷ 3/1 = 4/5*1/3

4. Приводим полученную комбинацию к общему знаменателю. Числа, находящиеся над чертой и под ней, перемножаются между собой:

(4*1)/(5*3) =?

5. Проводим вычисления числителя и знаменателя по отдельности:

(4*1)=4

(5*3) =15

6. Записываем в виде обыкновенной дроби – 4/15.

7. Подводим итог:

4/5 ÷ 3 = 4/15

Если числитель и знаменатель можно разделить на одно и то же кратное число, то упрощаем выражение.

Для выполнения аналогичных задач достаточно знать только одну формулу и научиться ее применять. Постоянная практика в решении различных задач позволит проводить вычисления в уме без помощи дополнительной техники. На интернет-ресурсах можно найти различные варианты решенных задач, возможно среди них окажется именно ваша. В мире компьютеров и другой мобильной аппаратуры достаточно просто получить результат у математического примера, но без знания определенного набора формул иногда сделать это бывает крайне затруднительно. Правила достаточно быстро запоминаются и хорошо усваиваются при постоянной практике.

Видео: как разделить десятичную дробь на натуральное число.

Деление целого числа на десятичную дробь
Математика 6 класс. Деление дробей
Деление дробей
Как разделить десятичную дробь на натуральное число.
Деление десятичной дроби на целое число